Fairness-Aware Offloading and Trajectory Optimization for Multi-UAV Enabled Multi-Access Edge Computing
نویسندگان
چکیده
منابع مشابه
UAV-Enabled Mobile Edge Computing: Offloading Optimization and Trajectory Design
With the emergence of diverse mobile applications (such as augmented reality), the quality of experience of mobile users is greatly limited by their computation capacity and finite battery lifetime. Mobile edge computing (MEC) and wireless power transfer are promising to address this issue. However, these two techniques are susceptible to propagation delay and loss. Motivated by the chance of s...
متن کاملMobile Edge Computing for Cellular-Connected UAV: Computation Offloading and Trajectory Optimization
This paper studies a new mobile edge computing (MEC) setup where an unmanned aerial vehicle (UAV) is served by cellular ground base stations (GBSs) for computation offloading. The UAV flies between a give pair of initial and final locations, during which it needs to accomplish certain computation tasks by offloading them to some selected GBSs along its trajectory for parallel execution. Under t...
متن کاملUAV Trajectory Optimization for Data Offloading at the Edge of Multiple Cells
In future mobile networks, it is difficult for static base stations (BSs) to support the rapidly increasing data services, especially for cell-edge users. Unmanned aerial vehicle (UAV) is a promising method that can assist BSs to offload the data traffic, due to its high mobility and flexibility. In this paper, we focus on the UAV trajectory at the edges of three adjacent cells to offload traff...
متن کاملTrajectory Optimization for Completion Time Minimization in UAV-Enabled Multicasting
This paper studies an unmanned aerial vehicle (UAV)-enabled multicasting system, where a UAV is dispatched to disseminate a common file to a number of geographically distributed ground terminals (GTs). Our objective is to design the UAV trajectory to minimize its mission completion time, while ensuring that each GT is able to successfully recover the file with a high probability required. We co...
متن کاملUAV-Enabled Wireless Power Transfer: Trajectory Design and Energy Optimization
This paper studies a new unmanned aerial vehicle (UAV)-enabled wireless power transfer (WPT) system, where a UAV-mounted mobile energy transmitter (ET) is dispatched to deliver wireless energy to a set of energy receivers (ERs) at known locations on the ground. We investigate how the UAV should optimally exploit its mobility via trajectory design to maximize the amount of energy transferred to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3006112